Impact of smoothing on parameter estimation in quantitative DNA amplification experiments.

نویسندگان

  • Andrej-Nikolai Spiess
  • Claudia Deutschmann
  • Michał Burdukiewicz
  • Ralf Himmelreich
  • Katharina Klat
  • Peter Schierack
  • Stefan Rödiger
چکیده

BACKGROUND Quantification cycle (Cq) and amplification efficiency (AE) are parameters mathematically extracted from raw data to characterize quantitative PCR (qPCR) reactions and quantify the copy number in a sample. Little attention has been paid to the effects of preprocessing and the use of smoothing or filtering approaches to compensate for noisy data. Existing algorithms largely are taken for granted, and it is unclear which of the various methods is most informative. We investigated the effect of smoothing and filtering algorithms on amplification curve data. METHODS We obtained published high-replicate qPCR data sets from standard block thermocyclers and other cycler platforms and statistically evaluated the impact of smoothing on Cq and AE. RESULTS Our results indicate that selected smoothing algorithms affect estimates of Cq and AE considerably. The commonly used moving average filter performed worst in all qPCR scenarios. The Savitzky-Golay smoother, cubic splines, and Whittaker smoother resulted overall in the least bias in our setting and exhibited low sensitivity to differences in qPCR AE, whereas other smoothers, such as running mean, introduced an AE-dependent bias. CONCLUSIONS The selection of a smoothing algorithm is an important step in developing data analysis pipelines for real-time PCR experiments. We offer guidelines for selection of an appropriate smoothing algorithm in diagnostic qPCR applications. The findings of our study were implemented in the R packages chipPCR and qpcR as a basis for the implementation of an analytical strategy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-step Smoothing Estimation of the Time-variant Parameter with Application to Temperature Data

‎In this article‎, ‎we develop two nonparametric smoothing estimators for parameter of a time-variant parametric model‎. ‎This parameter can be from any parametric family or from any parametric or semi-parametric regression model‎. ‎Estimation is based on a two-step procedure‎, ‎in which we first get the raw estimate of the parameter at a set of disjoint time...

متن کامل

A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...

متن کامل

A quantitative approach for Polymerase Chain Reaction based on a Hidden Markov Model

Polymerase Chain Reaction (PCR) is a major DNA amplification technology from molecular biology. The quantitative analysis of PCR aims at determining the initial amount of the DNA molecules from the observation of typically several PCR amplifications curves. The mainstream observation scheme of the DNA amplification during PCR involves fluorescence intensity measurements. Under the classical ass...

متن کامل

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

A quantitative approach for polymerase chain reactions based on a hidden Markov model.

Polymerase chain reaction (PCR) is a major DNA amplification technology from molecular biology. The quantitative analysis of PCR aims at determining the initial amount of the DNA molecules from the observation of typically several PCR amplifications curves. The mainstream observation scheme of the DNA amplification during PCR involves fluorescence intensity measurements. Under the classical ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical chemistry

دوره 61 2  شماره 

صفحات  -

تاریخ انتشار 2015